Mando
Member Since: 30 Jul 2015
Location: Nidderdale
Posts: 29

|
Hi Sid. Ideally, one would measure the actual DC current with an in-circuit ammeter but, as explained, this can be hazardous and will probably fry your meter's fuse or wipe your radio code. However, the tip is about measuring the DC voltage across any current-carrying component. This is an accepted and accurate way to calculate the DC current flowing in the component, assuming you know its DC resistance. You then simply calculate V/R (where V is in Volts and R is in Ohms) and you have the current in Amps.
In the case of a battery lead (+ or -) we don't care about the actual resistance (which will typically be less than 1 Ohm). We are just looking for ANY small voltage across it which indicates that some current is flowing. Of course, if you disconnected one end of the battery lead and measured its actual resistance, you could then reconnect it, measure the voltage drop and calculate the actual current. For example, if the cable is 1 Ohm and there is a drop of 2 V across it, the real current is 2 Amps.
In the case of a connected battery lead supplying a current of say 0.25A, from V=I*R, you will only see a voltage across a 1 Ohm cable of 0.25 Volts.
The tip related to residual current drains so please bear in mind that when the starter motor is energised, the battery voltage always drops a good deal. The above method still holds true; it's just that the voltage readings will be much lower. In the case of a failed battery, you may see the battery's terminal voltage (ie voltmeter across both battery posts) drop to almost nothing under heavy load.
Sid, you mention a voltage drop of 0.5 V between the end of the cable and the chassis. Using the same rule (ignoring the rest of the cable) this indicates that the resistance of the earth joint is high: because V=I*R, for any current, if R is high then V would also be high. A perfect chassis connection would be zero Ohms so, even with 100A flowing to the starter, the voltage drop across the joint would be zero. It's worth mentioning that my tip assumes that the earth connection is not being included in the test. Of course, if the chassis connection was poor, there probably wouldn't be much drain anyway!
I hope that explains the theory a little better. Feel free to raise any questions.
|